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DYNAMIC EQUATION OF STATE OF A GAS CONTAINING VAPORIZING DROPLETS 

G. P. Yasnikov and V. S. Belousov UDC 536.12 

On the basis of the relaxational formalism of nonequilibrium thermodynamics, a 
differential equation is obtained relating the pressure and volume of a gas con- 
taining vaporizing droplets. The relaxation time is calculated. 

The existing methods of calculating processes of gas compression with evaporative cool- 
ing are based, as a rule, on the methods of classical thermodynamics. This leads to the 
necessity of assuming thermal and phase equilibrium between the droplets and the vapor--gas 
mixture [1-3]. With a sufficiently high rate of the process, the temperature of the vapor T 
and the droplet T D will differ from the saturation temperature Ts: T-T s = ~i, TD-Ts = ~. 
As a result, the vapor concentration will also differ from the equilibrium value: x-x s = ~3. 
The rigorous description of nonequilibrium, even with fixed parameters of the cooling medium, 
is an extremely complex problem, and leads to very cumbersome results [4, 5]. Therefore, it 
is of interest to consider some simplified models of the process of nonequilibrium compression 
with droplets. Thus, for example, for the practical realization of evaporative cooling in 
compressors, it is expedient to use small concentrations of finely dispersed moisture (~30 g 
per kg of air) [2, 6]. The behavior of this mixture will be associated with small deviations 
from the equilibrium state, which may be analyzed using linear nonequilibrium thermodynamics. 
Below, the nonequilibrium compression of gas with droplets is analyzed on the basis of the re- 
laxational formalism of the thermodynamics of irreversible processes. 

It is assumed that the vapor, gas, and droplets, with masses MV, MG, and MD, respective- 
ly, form two local-equilibrium subsystems and, in accordance with the mass-conservation law, 
M V + M D = MM, the mass of injected moisture. It is expedient to introduce the notation: 

= MM/MG, x = Mv/MM, l-x = MD/M V. In accordance with the well-known ideas of [7-9], it may 
be assumed that, in quasisteady conditions, the intensity of heat transfer and the rate of 
vaporization depend on the temperature difference between the subsystems T--TD~ The behavior 
of this system will be characterized by a single effective relaxation time ~z. Further, fol- 
lowing [i0], the operator form of the effective thermodynamic derivatives is used, allowing 
the adiabatic modulus k and the polytropic index n to be represented in the form of operators 

\ ~  1~ no ~ .  

In this expression k~ and n~ depend solely on the properties of the vapor--gas mixture (with- 
out the particles) in the initial state, and characterize the process of instantaneous com- 
pression, in which the particles do not react to the perturbation. The indices ko and no 
characterize the equilibrium compression of the mixture of the gas and the droplet. It de- 
pends on the instantaneous state of the system, and varies over time~ Formally repeating the 
derivation in [i0], a dynamic equation is obtained for the adiabatic and polytropic compres- 
sion processes of the vapor--gas mixture with the droplets 

v 

In deriving this equation, it is taken into account that k~k~1~n~n~1~---~T~l; a dot over a 
a quantity denotes the first derivative with respect to the time; two points denotes the sec- 
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ond derivative. Formally, Eq. (2) coincides with the dynamic equation of state for a mixture 

of gas with solid particles, but in the case of a droplet the equation includes the variable 
(because of the change in particle radius) relaxation times ~p(t) and ~v(t). 

The calculation of these times is an independent problem, which may be solved by the 
general methods outlined in [ii] and the calculation scheme in [12]. Assuming that the 
vapor-gas mimture is an ideal gas, the entropy-balance equation for the whole system is 
written in the form 

% + 7- -vo 

In view of the small moisture concentration (U ~ i), the specific heat 

CVI = CVG + ~XsC1~ Cpl:CI~j ~XsC~; C2= ~ (1 - -  xs) c D ( 4 )  

may be regarded as constant and referred to the equilibrium state with a vaporized-moisture 
concentration x s. All the specific quantities (cv1 , Cpl, A~, V) in Eq. (3) relate to 1 kg 
of gas. 

For the subsequent calculations, it is expedient to regard all three relaxation parame- 
ters 6,, 62, 63 as independent. The entropy production may be written in the usual form [ii] 

S=--AL (5) 
The affinity between each of the relaxational processes is specified by the components of the 

^ ~  

vector A = Tg.{. The elements of matrix g are the coefficients of the series expansion of the 
entropy in the vicinity of the equilibrium state with respect to the relaxation parameters, 
retaining terms of up to second order in smallness. They are easily calculated by differen- 
tiating the coefficients of the differential form in Eq. (3) with respect to 61, 62, 63 .:o0) (0) 

= - -  = C~ s 0 , = (6) 

0 a~r ~ 

, ( ] 
where azr = ~ \ Oxs /zr~" The subscript z is introduced to abbreviate the notation. For 

isochoric conditions, z = V; for isobaric conditions, z = p. The kinetics of the relaxational 
processes are specified using Newton's laws for the heat transfer 

dT 
Czl  - -  ocf (T - -  TD), ( 7 ) 

dt 

dTD 
c~ - -  = ~: (T -- TD> (8) 

dt 

and the mass transfer 

dx 
- - -  p ( x - - x ~ ) .  (9 )  

dt 

Expressing T, TD, and x in terms of the relaxation parameters, the system in Eqs. (7)-(9) may 
be written in vector form 

= _ . -~,  (i0) 

where L' is the matrix of empirical phenomenological coefficients, of the form 

(Z - - 1  ]-; = afCF 1 :c2 0 ( l l )  

o o P 

On the other hand, the linear phenomenological laws may be written in terms of the affinity 
of the process 
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T 

I t  follows from Eqs. (6), (i0), (ii), and (12) that 

E = 

~:T~ c ]  ~ - -  o::T~ c~: c-f I 0 \ 

-- c~:Tf cZ'  cT ~ o:fTf c7_' 0 ) ; 
o o 

NI : L . ~ =  ~ - - c z f c T  ~ ~:cT  I 0 �9 

< o o 

(z2) 

(13) 

The isochoric and isobaric relaxation times are inverse quantities of the roots of the charac- 
teristic equation of the matrix M [13] 

~fC~ I ~ ~C~ ~ 

l[ & +DefM=0. (14) 
=lot ' + ' 0 

In those cases wbere one of the relaxation times (of vaporization of heat transfer) is much 
less than the other, the last term in Eq, (14) may be neglected, and the relaxation time is 
determined from the relation 

r -- - -  Sp M = ~f + + ~. (15) 
TZ ~ , 

Since Det M = 0, there is a linear relation between the relaxation times, which may be ob- 
tained from the condition ~S = 0, thereby passing to one relaxation parameter ~. This is also 
the basis for representing the adiabatic modulus and the polytropic index in the form in 
Eq, ( l ) .  

Finally, note that, in the case of a polytropic process, there is heat transfer with the 
surrounding medium. Then the entropy flux des must be included in Eq. (3); it is related to 
theheat flux as follows 

that is 

dQ= T~deS=c~dT~ = Ts ( as ~ dT~, 

, { as I d T + : a S  

Since the matrix elements gik in Eq. (6) are calculated in the equation of state (T s = const), 
the relaxation times T z defined by Eq. (15) may be used for both adiabatic and polytropic 
processes. In this case, the heat-transfer coefficient a and mass-transfer coefficient B may 
in principle be found using empirical dependences. 

The relaxation times ~z defined by Eq. (15) will now be considered in more detail. If 
an arbitrary phase of the compression process is chosen as the initial equilibrium state, 
with respect to which the deviation ~ is considered, the current drop radius is determined 
from the relation 

R ---- (1 --xs)l/< (17)  
Ro 

Taking into account that the concentration of droplets in 1 kg of gas 

N 0 
ND 3~ 
M O 4~R~PD 

and using Eq. (17), the quantity uf may be written in the form 

(18) 
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Fig. i. Dependence of the mean relaxation time T z on the 

drop diameter d (mm): I) ~ = 0.005; 2) 0.03; 3) 0.i. 

Fig. 2. Dependence of the relaxation time rz on the degree 
of vaporization of the drop x: I) ~ = 0.005, d = 1 mm; 2) 

0.03, 2. 
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Fig. 4 

Fig. 3. Dependence of the mean relaxation time T z on the 
moisture concentration ~ with a particle diameter d = 0.2 
r0/-n. 

Fig. 4. Temperature rise in the compression of a vapor--gas 
mixture with droplets in a compressor with various droplet 
concentrations. The compression time To = 0.2 sec, the 
drop diameter d = 0.2 mm, initial temperature TI = 293~ 

degree of increase in pressure P~/Pl = 3.65. The points 
correspond to experimental results of [6]. 

~ / =  4aR2aN ~ _ 3D~ (1 - -  x,) 2/3. (19)  
R,,PD 

Since the matrix element gaa in Eq. (6) is calculated at constant temperature, the law of drop 
vaporization in an isothermal medium may be used to determined B. In the simplest case, it 
takes the form [7] 

dMD - 4aRDND(c= - -  c). (20 )  
dl 

In this expression, the concentrations c s and c and the droplet mass M D may be expressed in 
terms of the degree of vaporization x and the moisture concentration ~ using the relation 

l~x m c  P l~tx = , u x  P 
T)r v =  my + m v Pvr 

c 

l~Z G 

J s i n g  g q s .  (21)  and ( 1 8 ) ,  Eq.  (20)  may b e  w r i t t e n  i n  t h e  f o r m  

d~a _ 3p.Dpo9 ( 1 - - x s ) l / a ~ a  : - - ~ a "  
dt RBPD 

= ~tXgG( p, T). (21)  

(22) 
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The factor preceding ~a on the right-hand side of Eq. (22) is the coefficient ~ in Eq. (9). 

Using Eqs. (20) and (21), the relaxation times in Eq. (15) may be written in the form 

o/ ] -- ]1/'3 1 .... 3 ~  i- ( 1 - - . v 0  - '3 1 3~tDpG(I-- . r . .  

zz ROOD j c ~ '  ~txsCzv ~t (1 __ z.)1 ;35 ] 4- R6pD,, (23) 
If the initial state under the condition x s = 0 is taken as the state at the start of the 
calculation, then the first two terms will characterize the thermal relaxation without mass 
transfer and the last the isothermal vaporization. This corresponds to the usual calculation 
scheme for the process of drop vaporization [4, 7]. Simultaneous thermal and diffusional re- 
laxation was considered in [5]. The results of [4, 5] may be used to refine Tz; however, 
they are so cumbersome as to require numerical calculation on a computer. 

The relaxation times Tp and z V calculated from Eq. (23) under the assumption that Nu = 
2 [7] are found to be practzcally identical and proportional to the surface area of the par- 
ticles, i.e., compression will be almost equilibrium for very finely disperse systems and 
like the compression of a pure gas for coarsely disperse systems (z z+0 as d§ and r z+~ as 
d+~). The dependence of the mean relaxation time on the diameter is shown in Fig. i. 

The dependence of rz on the degree of vaporization is shown in Fig. 2 and the dependence 
of ~z on the drop concentration ~ in Fig. 3. In the limit as ~+0, r z+~, and compression in 
the absence of droplets occurs, as would be expected, like compression of a pure gas. The 
averaging of the relaxation times in Figs. 1 and 3 is taken over the degree of vaporization x. 
In the calculations, the following parameter values are assumed: CpG = i010 J/kg~ c~G = 
720 J/kg'~ Cpv ~ 2000 J/kg.~ cvG = 1600 J/kg.~ c D = 4200 J/kg.~ D = 2.2.10 -5 m /sec; 
I = 2.5.10 -= WTm. K; PD = i000 kg/mS; PG = 1.3 kg/m 3. 

From the known mean relaxation times, the polytropic index may be estimated for the mix- 
ture of gas with vaporizing droplets [i0] 

u=!z 4- n o - - l z ~  (24) 
TV 

14- 
t o 

and the temperature rise AT in the compression of this mixture in the cylinder of a com- 
pressor may be calculated 

= -- i . (25) 

i J 

Comparison of the results of calculation with the experimental data of [6] is shown in Fig. 
4, where the points correspond to the experimental results. The discrepancy between the cal- 
culational and experimental data does not exceed 6%. 

If n relaxational processes occur simultaneously in the system, then the expression for 
the susceptibility [13] may be used to write the polytropic index in the form 

8n~ 
: n = 4- 

i I ,4- TiD ' (26) 

where 

V t a p l  . 

n o , -  L1 aT)J:, ' .  - 

Then the corresponding dynamic equation of state will be of order n + i. 
tional processes (the case considered in the present work) 

For two relaxa- 

8~i ~n2 

1 4- T~6 i-% T219 

and the dynamic equation of state takes the form 

(27) 
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"pV~I~2 +p  IV (2 + iF) ~z~ + V (~ + ~)] + p {V (21~ ~ + 1) ~ 2  + 9 [~= (~ + T2 + 6 n ~  ~ ~!z~) + ~ § ~] + V} + 

+ p ['V lz=z1% + Vn ~ (T1 ~- T~ + 6nlT~ + 6n2zl) T V(I~ ~ + 6nl + 6n~)] :-  0. (28)  

Writing the characteristic Eq. (14) in terms of the relaxation times 

~2 __ (~i ~- T2) T ~ ~I~2 = 0 (29) 

and neglecting the last term of this equation in the limiting cases T~T2~(T 1~ T2) ~ , it is found 
that z = ~ + ~=, where ~i= [~(r are the relaxation times of the processes of 
heat transfer and vaporization, respectively. Then Eq. (28) reduces to the dynamic equation 
of state obtained above, Eq. (2). 

NOTATION 

T, TD, Ts, vapor, droplet, and saturation temperature, respectively; ~i, ~2, ~3, re- 
laxation parameters; MV, MG, MD, vapor, gas, and droplet mass; m, molecular mass; x, degree 
of dryness of the vapor; D, moisture concentration; rp, TV, isobaric relaxation time; k, n, 
adiabatic modulus and polytropic index; p, pressure; V, volume; S, entropy; ~, chemical po- 
tential; PG, PV, density of gas and vapor at the mixture pressure and temperature; 0D, densi- 
ty of the droplet; A, affinity of the process; ~, heat-transfer coefficient; ~, mass-transfer 
coefficient; %, thermal conductivity of the gas; D, diffusion coefficient; R, drop radius; ~, 
surface area of droplet; NU, Nusselt number. Indices: i, G, gas; 2, V, vapor; D, droplets; 
O, equilibrium; p, isobaric conditions, p = const; V, isochoric conditions, V = const; s, 
saturation; ~, instantaneous compression; a dot over a quantity denotes differentiation with 
respect to time; the symbol ^ over a quantity denotes an operator. 
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